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Abstract. The Livermore Computational Nuclear Physics group is charged with producing updated neutron incident cross
section evaluations for all the actinides in the coming year, concentrating on neutron induced fission, neutron capture and
(n,2n) cross sections. We attack this daunting task either by adopting other recent evaluations or by performing our own.
Owing to the large number of nuclei involved, we seek to automate this process as much as possible. For this purpose, we
have developed a series of computer codes:x4i , an interface to the EXFOR database,fete , a code that translates ENDF/B
formatted evaluations into a computationally convenient form, andda_fit , a fitting code that takes all relevant EXFOR data
for a reaction or set of reactions and performs a generalized least square fit to them, subject to various constraints and other
prior information.

INTRODUCTION

Our goal is to produce the best possible evaluation for all
neutron incident cross sections for all known actinides
with uncertainty estimates. This is a daunting task that
we approach from several directions. Fortunately this
task is made easier due to the new ENDF/B-7 prelimi-
nary evaluations from LANL, the new JENDL-3.3 eval-
uations and the older, yet high quality, JEFF-3.0 and
ENDF/B-6 evaluations. Still the evaluators in each of
these cases did not always have access to the latest exper-
imental data and our understanding of these nuclei often
advances faster than our ability to perform evaluations.
Thus, an automated approach to re-evaluating neutron in-
duced reactions on these nuclei is needed. In these pro-
ceedings, we outline several new codes to facilitate this
project and we outline our evolving approach to produc-
ing these evaluations. A summary of all evaluations and
experimental data is available at [1].

We now outline our contribution. First, we describe
our procedure for producing an evaluation. Second, we
explain how we will perform our uncertainty estimates
for modeled reactions. Next, we describe how we will
perform fits to data where needed. Finally, we outline our
future plans for this project.

EVALUATION PROCEDURE

Our first step in producing an evaluation is dividing
a reaction into physically relevant energy ranges. For
reactions with no threshold, these are the thermal region,
resonance region, unresolved resonance region and the

high energy region. For threshold reactions, we only need
the high energy range. Because we need to automate
this division, the energy ranges are fixed for all nuclei,
even if the choices are not optimal for a given nucleus.
Once we have performed this division, we examine how
much data is available and how many evaluations have
been performed for this nucleus and reaction and make
a decision how to create an evaluation. We obtain all
available data from the EXFOR database and translate
them into a computationally convenient form using our
x4i code [2]. We translate the existing evaluations into
a similar form using Livermore’sfete code [3].

If there is data in a particular energy range, then we
must decide if there are enough data. We will do this by
computing the mean spacing between data points and the
variance in the data point spacing on this energy range:

∆E = (Emax−Emin)/ND
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∑
i=1

(Ei+1−Ei −∆E)2 (1)

whereND is the number of data points on the energy
interval (Emin,Emax). If ∆E < ∆Ecut and var(∆E) <
var(∆E)cut, then there is enough data and it evenly
spaced enough to either choose a suitable evaluation or
fit the data in the absence of a reasonable evaluation.
To determine whether an evaluation is suitable, we com-
pare the evaluation’sχ2/ND to a predetermined parame-
ter ηcut for this energy range:
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We then choose the evaluation with the lowestχ2 from
all of the suitable evaluations. The results from a test
pass through the actinides is available in Ref. [1]. We
comment that we did not compute covariance matrices
for data, did not consider coupled (i.e. ratio) data and
made no attempt to evaluate data itself. This implies that,
for example, badly normalized data is not fixed. If no
evaluation is suitable, then we will fit the data using our
fitting code described below.

In many cases, there is no experimental data and there
not much known about the nuclei in question. In these
cases there is often only an evaluation either based on
systematics (e.g. Livermore’s older ENDL99 data) or an
Hauser-Feshbach calculation (e.g. the newer ENDF/B-7
and some of the newer JENDL-3.3 evaluations). In this
case we plan to just adopt the newest evaluation. This
does not guarentee that we get the best evaluation, but
there is no simple criteria on which we can base a com-
puter algorithm. Because of this, we flag the evaluation
for a follow up examination. Even with this simplifying
choice, we still must produce uncertainty estimates. In
the next section, we summarize the approach to uncer-
tainty estimates from Ref. [4].

If there are no satisfactory evaluations and insuffi-
cient data, then we must consider performing our own
Hauser-Feshbach calculations. We have not investigated
this case thoroughly yet as it will require us to be able to
drive an external Hauser-Feshbach code from within our
framework. Furthermore, we must devise a consistency
checking scheme, perhaps based on the amount of data
available in either the ENSDF or RIPL databases. In any
event, once we have performed our calculations, we must
estimate the uncertainty on the computed cross sections.
We discuss this in the next section.

UNCERTAINTY ESTIMATES FOR
HAUSER-FESHBACH CALCULATIONS

For incident neutron energies below 20 MeV, reaction
cross sections are mostly modeled with the Hauser-
Feshbach model. This model takes several inputs: nu-
clear level schemes and level densities for all required
nuclei,γ-ray strength functions, particle transmission co-
efficients and fission transmission coefficients (if using
the Hill-Wheeler single or double humped barrier fission
models). Estimating the uncertainty on modeled cross
sections boils down to estimating the uncertainties on
these components, then propagating the uncertainties.

In the Hauser-Feshbach model, a single-step reaction
is given by

σi ∼ σabs
Γi

∑ j Γ j
, (3)

where σabs is the absorption cross section andΓi is
the partial width for decaying into channeli. Hence
BRi = Γi/∑ j Γ j is the branching fraction into channel
i. Similarly, the(n,2n) cross section (the only two-step
reaction we consider) is given by

σ(n,2n)∼ σabs
ΓA+1

n

∑ j ΓA+1
j

ΓA
n

∑ j ΓA
j

= σabsBRA+1
n BRA

n . (4)

Here we have added the total nucleon numberA as an
index to remind ourselves which compound nucleus is
relevant for each stage.

In either the one or two step case, the uncertainty on
the absorption cross section is given by the optical model
as we will discuss shortly. The partial widths are given by

ΓA
i (E)∼

∫ E−Esep

0
dεTi(ε)ρA(E−Esep− ε). (5)

HereEsep is the separation energy for this channel,Ti is
the transmission coefficient for this channel andρ is the
level density for this compound nucleus. We estimate the
relative uncertainty of the partial widths as
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once we estimate the uncertainty in the level density.
We compute the particle transmission coefficients us-

ing an Optical Model Potential (OMP). The OMP is
usually constrained by measurements of the total cross
section and angular distributions from the elastic scat-
tering. Since it is often straight-forward to measure the
total cross section it is often possible to produce very
high quality OMP’s and hence predict the absorption and
shape elastic cross sections. The total, absorption and
shape elastic cross sections as well as the transmission
coefficients are all related to the S-matrix:
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2.
(7)

Since the total cross section goes like one power of the
S-matrix and the other parameters go like the S-matrix
squared, we can expect that the relative uncertainty on
these parameters is controlled by the uncertainty on the
total cross section. Roughly speaking, we take:

δσabs

σabs
,

δσse

σse
,

δ T̀
T̀

∼ 2
δσtot

σtot
. (8)



We will estimate the uncertainty in the total cross-section
by performing fits to the total cross section data and using
systematics to extrapolate to other nuclei.

In order to estimate the uncertainty on the level den-
sity, we note that typicallyρ(E)∼ ρ0eE/T . Thus, the cu-
mulative level distribution,N(E), is given roughly by

N(E) =
∫ Emax

0
dEρ(E)≈ Tρ(Emax). (9)

Since we can count the cumulative level distribution
directly by counting the levels in a given level scheme,
we have an estimate of the level density. Furthermore,
sinceN(E)’s uncertainty isδN(E) =

√
N(E), we have

a rough way to estimate the relative uncertainty on the
level density:

δρ(E)
ρ(E)

∼ 1√
N(E)

. (10)

Now let us combine these results to obtain the rela-
tive uncertainty on one-step and two-step compound nu-
clear cross sections. Under the assumption that the cap-
ture and fission channels have the same relative uncer-
tainty as the particle exit channels, the uncertainty on
the branching ratios is comparable to that of the partial
widths: δBRi/BRi ∼ δΓi/Γi . Strictly speaking the rel-
ative uncertainty on the partial widths is probably very
different for the different channels, but lacking any bet-
ter scheme we have made this crude assumption. With
this approximation, the one-step and two-step compound
cross sections have the following relative uncertainties:
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(11)
In this framework, multi-step fission should also be
treated as a two or more step reaction.

In all cases, there are many sources of uncertainty in
these cross sections so it is possible that we may arrive
at a large model uncertainty. In these cases, we cap the
relative uncertainty at 33% since this allows the modeled
value to be consistent with zero at the 99% confidence
level (corresponding to “3σ ”).

It is clear from Eqs. (3) and (4) that the cross section
for a specific channel is related to all of the other chan-
nels through the sum over partial widths in the denom-
inators. Given this, we must ask how to proceed in the
case that we need to replace a badly modeledΓi with,
say, a fit to data for that channel. This question is not
academic: this problem occurs routinely for the fission
cross sections. A little algebra shows that we can write a
corrected cross section in terms of the corrected fission

cross section and the uncorrected partial cross sections:

σfixed
x = σ

orig
x +

(
σ

orig
f −σfixed

f

)
σ

orig
x

σce+σγ +σ(n,n’) + ...
.

(12)
The sum in the denominator here runs over all open chan-
nels. The uncertainty resulting from the combination of
this rescaling and previous modeling is given by:
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√√√√(δσ
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σ
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(13)
to leading order in the ratioσorig

x /(σce+ σγ + σ(n,n’) +
...).

LEAST SQUARE FITS TO DATA

In those cases where we must fit data ourselves, we
turn to our constrained generalized least-square inversion
packageda_fit . In addition to allowing for an off-
diagonal covariance matrix in the data,da_fit can
force the fitted cross sections to obey constraints such
as:

σtot(E) = σelas+σγ +σf +σ(n,n’) +σ(n,2n),
σ(n,2n)(Ethresh) = 0.

(14)
This code is in active development and we hope to re-
lease it in the next fiscal year. In this code, we represent
a cross section in a Basis Spline basis:

σfit(E) =
NM

∑
i=1

σfit
i Bi(E), (15)

whereσfit
i are theNM coefficients of the spline that we

fit andBi(E) is the spline basis. Basis Splines generalize
box and linear splines to piece-wise polynomials of any
order. In practice second order polynomials are sufficient
because they allow for a smooth representation of fitted
cross sections and allow us to impose constraints both on
the value of the cross section and derivatives of the cross
section.

To fit the data, we want to solve this equation in the
least-square sense:

σdata
i ≡ σdata(Ei) =

NM

∑
j=1

σfit
j B j(Ei), (16)

where nowB j(Ei) functions as the kernel of this matrix
equation. We proceed as in Ref. [5] and find the vector
of coefficients that minimize theχ2:

χ
2 = (B·σfit −σdata)T · (∆2

σdata)−1 · (B·σdata−σfit).
(17)
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FIGURE 1. Fit to 235U(n,2n) data using 2nd order Basis Spline, constraining the cross section to zero at threshold.

The coefficients that do this are:

σfit = ∆2
σfit ·BT · (∆2

σdata)−1 ·σdata. (18)

The covariance matrix of the fit coefficients is:

∆2
σfit = (BT · (∆2

σdata)−1 ·B)−1. (19)

In order to stabilize the inversion, we can take advan-
tage equality constraints. An equality constraint is a con-
dition on the vector of fit coefficients that has the generic
form C ·σfit = c such as in Eq. (14). Equality constraints
are easily included by adding a penalty term to theχ2:
χ2+λ (C ·σfit−c)2. Hereλ is a trade-off parameter and
we may vary it in order to emphasize stability in the in-
version (by makingλ huge) or to emphasize goodness-
of-fit (by settingλ to zero). With this modification of the
χ2, the fit coefficients are

σfit = ∆2
σfit ·

(
BT · (∆2

σdata)−1 ·σdata+λC T ·c
)
,
(20)

and the covariance matrix is

∆2
σfit =

(
BT · (∆2

σdata)−1 ·B+λC T ·C
)−1

. (21)

An alternative approach is to use Lagrange multipliers to
force the constraints to be obeyed. We have investiged
this approach and found the results to be equivalent.

FUTURE PLANS

We have a lot of work to do to finish this project. Our
main task is to implement various improvements to our

fitter code, namely adding both fuzzy and inequality con-
straints and using the equations in the reaction fields of
the EXFOR data to automatically assemble data covari-
ance matrices. A secondary task is to either wrap an ex-
isting Hauser-Feshbach code or investigate the use of
systematics when there is neither data nor an existing
evaluation.
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